

Characterizing
Music through
Complex Networks

Manuel Bravo Silva Lamas
Master’s degree in Computer Science
Computer Science Department
2022

Supervisor
Pedro Manuel Pinto Ribeiro, Assistant Professor
Faculty of Science, University of Porto

Sworn Statement

I, Manuel Bravo Silva Lamas, enrolled in the Master Degree in Computer Science at the

Faculty of Sciences of the University of Porto hereby declare, in accordance with the

provisions of paragraph a) of Article 14 of the Code of Ethical Conduct of the University

of Porto, that the content of this dissertation reflects perspectives, research work and my

own interpretations at the time of its submission.

By submitting this dissertation, I also declare that it contains the results of my own

research work and contributions that have not been previously submitted to this or any

other institution.

I further declare that all references to other authors fully comply with the rules of

attribution and are referenced in the text by citation and identified in the bibliographic

references section. This dissertation does not include any content whose reproduction

is protected by copyright laws.

I am aware that the practice of plagiarism and self-plagiarism constitute a form of

academic offense.

Manuel Bravo Silva Lamas

September 28, 2022

Abstract

Complex networks can be seen in many domains, music being one of them. We seek to characterize
music by studying complex networks’ topology.

Music is not easily defined, as there are many aspects to it, with some more easily identified
than others. The most common method to analyse music is through sound as a final result. In
this work we look at it through a symbolic representation, via the standard MIDI format. Unlike
in an audio representation, where the audio waves are recorded, in a symbolic representation we
have essentially a generalization of the common musical score. By looking at music through its
most basic elements, which are the notes, we attempt to capture information that is not available
in other formats.

In order to achieve it, one mapping from songs to networks is presented. From the mapped
networks, features are chosen with the intent of characterizing the songs. To evaluate how well
the arrived feature set works, a set of synthetic MIDIs was designed, created, and then analysed.
We follow with an analysis of a dataset of chosen (non-synthesised) songs. In both analysis,
we describe the distinctions that can be made between certain groups of songs, or synthetic
examples, when comparing specific features (or set of features) values.

Finally, we present as a proof-of-concept the clustering results of the mentioned music dataset,
as a potential application of our proposed mapping and feature set.

Keywords: Complex Networks, Music, Characterization, MIDI

i

Resumo

Redes complexas podem ser vistas em vários domínios, música sendo um deles. Nós pretendemos
caracterizar música através do estudo da topologia de redes complexas.

Música não é algo facilmente definido, pois contém vários aspetos, alguns mais facilmente
identificáveis do que outros. O método mais comum para analisar música é através do som como
produto final. Neste trabalho analisamos música através de uma representação simbólica, via o
formato standard MIDI. Ao contrário de uma representação audio, onde as ondas de som são
gravadas, numa representação simbólica nós temos essencialmente uma generalização de uma
pauta musical comum. Observando a música através dos seus elementos mais simples, as notas,
tentamos capturar informação que não está disponível noutros formatos.

Para o conseguir, é apresentado um mapeamento de músicas em redes. Dessas redes mapeadas
são escolhidas características com o intuito de caracterizar as músicas. Para avaliar o desempenho
do conjunto de caracteristicas escolhido, um conjunto de MIDIs sintéticos foi desenhado, criado e
analisado. Seguimos com uma análise de um conjunto de músicas (não sintéticas). Em ambas as
análises nós descrevemos as distinções que podem ser feitas entre certos grupos de músicas, ou
exemplos sintéticos, quando comparando os valores de uma característica específica (ou conjunto
de caracteristicas).

Finalmente, apresentamos como prova de conceito os resultados de uma partição efetuada
através do mapeamento e conjunto de caracteristicas escolhidos, como potencial aplicação dos
mesmos.

Palavras-chave: Redes Complexas, Música, Caracterização, MIDI

iii

Acknowledgments

I want to thank my supervisor Pedro Ribeiro, that kept me interested on the next step, and was
immensely valuable with his inputs whenever I reached a dead end. Offering multiple alternatives
for how to follow up.

I am grateful for my family and friends that supported me during the whole period, waiting
patiently for me to complete it.

v

Contents

Abstract i

Resumo iii

Acknowledgments v

Contents viii

List of Tables ix

List of Figures xii

1 Introduction 1

1.1 Goals and Contributions . 1

1.2 Thesis Structure . 2

2 Preliminaries 3

2.1 Complex Networks . 3

2.1.1 Graph Definition . 3

2.1.2 Common Metrics . 4

2.2 Musical Concepts . 10

2.3 Related Work . 11

3 Songs to Networks 13

3.1 Data . 13

vii

3.1.1 MIDI . 14

3.1.2 Processing . 16

3.2 Mapping . 17

3.2.1 Mapping stages . 18

3.2.2 Overlap . 20

4 Analysis 23

4.1 Features . 23

4.2 Synthetic Dataset . 24

4.2.1 Designing The Dataset . 25

4.2.2 Experimental Results . 29

4.3 Music Dataset . 32

4.3.1 Experimental Analysis . 33

4.3.2 Clustering Results . 39

5 Conclusions 41

Bibliography 43

viii

List of Tables

3.1 MIDI note numbers . 15

4.1 Synthetic dataset features . 29

4.2 Pop and classical songs comparison . 36

4.3 Rock and classical songs comparison . 38

4.4 Rock and pop songs comparison . 39

4.5 Music dataset clustering results . 40

ix

List of Figures

2.1 Graph examples . 4

2.2 Node degree . 5

2.3 Betweenness centrality . 6

2.4 Closeness centrality . 7

2.5 Clustering coefficient . 8

2.6 Density . 9

2.7 Modularity . 10

2.8 Musical score example . 10

2.9 Musical score with one staff . 11

2.10 Higher order network example . 12

3.1 Musical score with two staffs . 14

3.2 MIDI message . 14

3.3 MIDI time units . 16

3.4 MIDI message pairing . 16

3.5 MIDI message list . 18

3.6 Musical score representation of the MIDI message list 19

3.7 MIDI timeline representation . 19

3.8 Mapped graph from MIDI . 20

3.9 Overlap example 1 . 20

3.10 Overlap example 2 . 21

xi

3.11 Overlap example 3 . 21

3.12 Overlap example 4 . 21

4.1 Synthetic dataset time series representations . 27

4.2 Synthetic dataset graphs . 28

4.3 Synthetic dataset graphs communities . 32

4.4 Pop and classical songs time series representations 34

4.5 Pop and classical songs graph representations . 35

4.6 Rock songs graph and time series representations 37

xii

Chapter 1

Introduction

Networks as a tool are quite powerful and flexible, they can be used to model and analyse systems
of many areas. Some network science specific areas of study are: roles [11], communities [3],
motifs [18], and higher-order networks [25].

However, Network Science has recently appeared as a multidisciplinary domain to study
networks incorporating a variety of topics and domains (graph theory, statistical mechanics, data
mining, data visualization, etc) [1]. Since then, it has been successfully applied to a multitude
of domains [5] such as social [24], road [19], biology networks [6] or even computer science
networks [22].

Music as also received some attention from a network science perspective. Most of the
work tackles aspects such as social networks (e.g. of musicians [8] or composers [17, 20]) or
more classical data mining tasks (e.g. music recommendation using lyrics [10]). In this work
we are more concerned with actually modelling the music itself and the melodies and notes.
There exists already some related work [7, 23], although not as much studied through the lenses
of complex networks as other subjects. Some existing studies involve revealing how a genre
evolved overtime [21], generating appealing music [15, 16], and studying music as a higher-order
network [23]. Nevertheless, many aspects and approaches have yet to be tested.

1.1 Goals and Contributions

Our goal, with this thesis, is to ascertain whether a feature (or set of features), obtained through
“common” network science metrics, can be used to capture simple musical aspects. Moreover, we
seek to realize whether those are sufficient to differentiate between sets of songs with different
characteristics or different genres.

The main contributions described in the thesis are:

• A methodology able to map songs into networks, describing exactly what MIDI attributes
we capture with our specific mapping.

1

2 Chapter 1. Introduction

• The introduction of a feature set able to characterize songs through their mapped networks.
• An experimental study that illustrates and explains the potential of each feature as a way

to individually, or as a subset of the feature set, capture specific musical aspects.
• A test of the feature set on a “real” music dataset with songs from 3 different genres (classic,

pop, and rock)
• As a proof-of-concept, a method to partition the music dataset via k-means with our

proposed feature set as attributes

All analysis was done with Python, particularly using the packages NetworkX1 [12] for
handling networks, and Mido2 for handling MIDI files. The code used to make all the analysis
present here, in addition to the datasets mentioned, are all available at GitHub.3

1.2 Thesis Structure

This thesis is divided in the following chapters. We now provide a short description of each.

Chapter 1 - Introduction Briefly explains the usefulness of network science as a domain, as
well as our intentions and goals. Giving a short description of each chapter’s main points.

Chapter 2 - Preliminaries Presents definitions for networks, its basic concepts and metrics,
as well as some musical concepts, which will be used on following chapters.

Chapter 3 - Songs to Networks Discusses how we obtain the information from the music
files, in the MIDI format. As well as how we process it, and how we map each song to a network
that will be used to characterize it. It also describes what attributes existing in the MIDI format
it does capture, as well as which ones it does not.

Chapter 4 - Analysis Describes exactly which features will be part of our feature set to
analyse songs. Presenting a dataset of synthesized MIDI examples, designed and created to
test our feature set. It then proceeds to showing the results of the feature set for the dataset,
describing it and highlighting differences between the various examples identified through the
chosen features. As well as testing the feature set on a dataset of chosen songs, and presenting a
partition of that same dataset in clusters as a proof-of-concept to glimpse at the capabilities of
the proposed feature set.

Chapter 5 - Conclusions Concludes the thesis by presenting our main contributions, as well
as our ideas and possible approaches to be undertaken in future work.

1https://networkx.org/
2https://mido.readthedocs.io/en/latest/
3https://github.com/manuellamas/Music_and_Networks

https://networkx.org/
https://mido.readthedocs.io/en/latest/
https://github.com/manuellamas/Music_and_Networks

Chapter 2

Preliminaries

In this chapter we will present basic complex networks, musical concepts and metrics, as well as
the associated terminology, which will be used throughout the rest of this thesis. We will begin
by explaining what a network (or graph) is, and then proceed to explaining what features can
characterize a network’s topology, illustrating each of them with the aid of a few toy networks.
Similarly, we will explain basic musical concepts relevant to our work. Starting by what is a
musical score, and how it represents music. To then defining what is a note, and how it represents
duration, and sound (pitch).

2.1 Complex Networks

Complex networks can be found in a variety of domains, as is proof of its many applications.
Music being something that is present in most people’s daily lives, it is only natural that it is
studied as well. There have been many approaches to studying music, a few already resorting to
Complex Networks.

2.1.1 Graph Definition

A graph (also called a network) G is characterized by a set of nodes (V) and a set of edges
(E), represented as G = {V, E}. Nodes can correspond to any category of objects that can
have a connection among themselves (a number, a name, a city, . . .), and an edge stands for a
connection between two nodes.

A directed graph is a graph where its edges are directed, meaning that each edge represents a
unidirectional connection, where for each edge the two nodes have different roles (source node
and end node). While in a weighted graph edges can have weights associated with them.

The number of nodes is represented as |V |, and the number of edges as |E|.

We present a few graph examples in figure 2.1.

3

4 Chapter 2. Preliminaries

1

23

(a) Undirected and unweighted

1

23

(b) Directed and unweighted

1

23

1

3

(c) Directed and weighted

Figure 2.1: Representation of (a) an undirected and unweighted graph, (b) a directed and
unweighted graph, and (c) a directed and weighted graph

2.1.2 Common Metrics

We will now describe some common metrics used to study a graph on its entirety, or a part of it
(e.g. a single node). There are metrics used to study individual nodes. Which can then be used
to, for example, obtain an average value for the entire graph. With each of those averages being
able to represent the graph in a distinct way.

Node Degree The degree of a node corresponds to the number of edges connected to it. If
the graph is directed then a node has both an in-degree, number of edges pointing to it, and
an out-degree, number of edges pointing from it to another node. We will denote deg(u) as the
degree of node u. While directed networks we will use degin(u) and degout(u) for in-degree and
out-degree values respectively. In which case the degree will correspond to the sum of both
in-degree and out-degree.

deg(u) = degin(u) + degout(u) (2.1)

For weighted graphs, the degree of a node is the sum of the weights of the edges connected
with that node. Furthermore, if it is also directed, the in-degree (out-degree) of a node is the
sum of the weights of the edges that start (end) on it.

The notation used for weighted graphs will be: degw(u), degin
w (u) and degout

w (u).

In figure 2.2 we illustrate the degree metric by presenting the degree value of each node on
an example graph.

2.1. Complex Networks 5

3

2

2

2 4

1

2 1

2

51

1 1

1

Figure 2.2: Representation of example graph with nodes labelled with their degree values

Average Degree An average degree can then be used as a measure of a graph, it is the
arithmetic mean of all nodes’ degree. We represent it as deg.
For directed graphs we can then calculate both the average in-degree and the average out-degree,
represented as degin and degout respectively.

deg = 1
|V |

∑
u∈V

deg(u) (2.2)

degin = 1
|V |

∑
u∈V

degin(u) (2.3) degout = 1
|V |

∑
u∈V

degout(u) (2.4)

For all three metrics we can also have a weighted version in which the weights are now
considered.

degw = 1
|V |

∑
u∈V

degw(u) (2.5)

degin
w = 1

|V |
∑
u∈V

degin
w (u) (2.6) degout

w = 1
|V |

∑
u∈V

degout
w (u) (2.7)

Path Length A path between two nodes is a set of nodes where each consecutive pair of nodes
is connected by an edge present in the graph. If the graph is directed then the edge must be

6 Chapter 2. Preliminaries

directed from the first node in each pair to the second. Path length is then the number of edges
present in the path, which matches the number of nodes minus 1.

In case of weighted graphs the edge weights are seen as distances and the path length is the
sum of the weights of the edges that are part of the path.

The shortest path length is simply the length of the path, between two specific nodes, with
the lowest number of edges. For weighted graphs, it corresponds to the length of the path with
the minimum length, so the minimum total sum of all weights of the edges present in the path.

Betweenness Centrality Betweenness centrality of a node v corresponds to the sum of the
fractions of the shortest paths that pass on v.

bet(v) =
∑

s,t∈V

σ(s, t|v)
σ(s, t) (2.8)

Where σ(s, t) represents the number of the shortest paths between nodes s and t, and σ(s, t|v)
the number of shortest paths between nodes s and t that pass through node v. In weighted
graphs, the shortest paths are calculated with the weights as distances, and we will denote it as
betw(u).

We present an illustration of the metric in figure 2.3.

22

0

0

30 56

0

12 0

40

420

0 0

0

Figure 2.3: Representation of example graph with nodes labelled with their betweenness centrality

2.1. Complex Networks 7

Closeness Centrality The metric closeness centrality of a node v corresponds to the inverse
of the sum of the shortest paths between said node and all other nodes over the number of those
reachable nodes.

clos(u) = n − 1∑
u∈V \{v}

d(v, u) (2.9)

For weighted graphs, similar to betweenness centrality, the weights are seen as distances when
calculating the shortest paths. The weighted version of the metric is then denoted as closw(u).

An example of the metric is shown in figure 2.4.

0.31

0.25

0.25

0.38 0.46

0.33

0.34 0.26

0.43

0.380.28

0.28 0.28

0.28

Figure 2.4: Representation of example graph with nodes labelled with their closeness centrality

Clustering Coefficient To measure how clustered, i.e. how connected, the graph is when
viewed in small subsets of nodes, we use the clustering coefficient. It corresponds to the fraction
of triangles (set of three nodes where every pair of nodes is connected) that node v belongs to.

clust(v) = 2T (v)
deg(v) × (deg(v) − 1) (2.10)

T (v) represents the number of triangles containing v, and deg(v)×(deg(v)−1)
2 the number of

pairs of nodes. Meaning that the clustering coefficient is the resulting division of the first value
by the second.

8 Chapter 2. Preliminaries

In figure 2.5 we display a graph example that has each node labelled with its clustering
coefficient. In it, we can see that all nodes but the ones composing the triangle on the upper left
part, which is the only triangle in the graph, have clustering coefficient 0.

0.33

1

1

0 0

0

0 0

0

00

0 0

0

Figure 2.5: Representation of example graph with nodes labelled with their clustering coefficient

Density Density measures how many edges there are in relation to the number of nodes.
I.e. the fraction of existing edges compared to the total number of possible edges. So for an
undirected graph, we have

2|E|
|V | × (|V | − 1) (2.11)

While for a directed one:
|E|

|V | × (|V | − 1) (2.12)

In figure 2.6 we display two graphs, graph (a) has 14 nodes and 14 edges. Therefore, having
a density of 2×14

14×13 ≈ 0.154.

For graph (b) its density value is of 2×13
7×6 ≈ 0.619. Since it has fewer nodes and more edges,

it has a higher density value.

2.1. Complex Networks 9

(a) Low density (b) High density

Figure 2.6: Representation of a graph with (a) low density and (b) high density

Communities and Modularity Communities are subsets of nodes that partition the entire
set of nodes.

Modularity is the metric that measures how well divided the communities of a network are. A
community partition with high modularity means that the nodes of each community have “many”
connections between themselves and there are “few” connections between nodes of different
communities.

There are several algorithms to detect the communities of a network. The one used in
our study was the Louvain Algorithm [2], through a NetworkX implementation. The Louvain
Algorithm partitions the network in communities by iteratively improving the modularity value.

It is worth mentioning that the implementation does not work with directed networks, and
so we are using it on an undirected version of the networks we have created.

In figure 2.7 we present two examples of graphs divided by communities that were obtained
via the Louvain Algorithm. The graph (a) has a modularity value of 0.52, while graph (b)
modularity value is 0.05. By looking at both examples we can see that in (a) the nodes are
more clearly separated than in (b), having many more edges in between the nodes of the same
community than between nodes of different communities.

10 Chapter 2. Preliminaries

(a) High modularity (b) Low modularity

Figure 2.7: Representation of graphs divided by communities: (a) with high modularity and (b)
with low modularity

2.2 Musical Concepts

A musical score is a common musical notation used to represent music in a way that can be read
by people. It does so by matching individual sounds to notes. Where a note is associated with a
certain pitch and duration.

Figure 2.8: Musical score example

In the figure 2.8 we present a very simple musical score with only four notes. The duration
of each note is given by the shape of the symbol used, and its pitch by its vertical position on
the lines of the staff (the set of 5 horizontal lines).

The pitch of a note corresponds to the sound’s frequency. For example, the notes in the score,
in order of appearance, match the following frequencies:

• C4 → 261.6256 Hz
• D4 → 293.6648 Hz
• E4 → 329.6276 Hz
• C5 → 523.2511 Hz

An octave is a set of notes where the note with the highest pitch’s frequency is double the value
of the frequency of the note with the lowest pitch. The notes C4 and C5 are examples of notes
separated by an octave, as C5’s frequency is double that of C4’s.

As for the sound duration, the first note occurring in the score is called a whole note, the

2.3. Related Work 11

second a half note, the third a quarter note, and the fourth an eighth note. Half a note lasts
half the duration of a whole note, a quarter note lasts half the duration of a half note, and an
eighth note lasts half the duration of a quarter note. There are other note durations, and they
are always half the duration of the first duration value that is longer than it.

In the example score we can observe that the spacing between the notes is not the same. As
the different notes have different durations, they occupy more or less space in the score given
their duration, which represents how much time they occupy.

How long a beat lasts in seconds is given by the tempo. Tempo is the number of beats per
minute, and the same music at a different tempo essentially plays at a different speed or rhythm.
It is often stated at the top of the score, represented with a quarter note symbol and the value of
beats per minute.

How many beats a whole note is equal to is defined by the time signature, the two numbers
at the start of the score. The value on the bottom defines how many beats the whole note lasts.
So in the example a whole note lasts 4 beats. Which means a half note then lasts 2, a quarter
note lasts 1, and so on.

In 2.9 we present the first row of a score of an actual music. There are of course many other
concepts needed to be able to fully understand a musical score, but the ones mentioned are the
most relevant ones for our purposes.

Figure 2.9: An excerpt of Air on a G String (Bach)

2.3 Related Work

There is already some work done to study music through complex networks. In one such study [7]
guitar solos as the target of study, a similar feature set is used but with a focus on the length of
the solos as well.

One approach used higher order networks [25] to study music, having each node able to
represent not just a single note but sequences of notes according to dependency [23]. An example
can be seen in figure 2.10, where the score (a) would be converted to the graph (b). The rules
are extracted choosing the dependencies with high confidence and sufficient support.

At one study [21] songs were split into time intervals with equal length. From that division a
pitch transition network would be created, in which each node represented a set of notes that
are played in the same interval. Each node then linked to nodes containing a set of notes that
happen in the previous or following interval, the edge weight reflecting the frequency of that

12 Chapter 2. Preliminaries

(a) Score

C4 C4|C4 G4|
C4,C4

G4|
G4,C4 A4

G4|A4A4

(b) Mapped graph

Figure 2.10: Higher order network example

sequence of sets. Those networks would then be used to compare different songs, using degree
distribution, as well as common metrics such as average path length and clustering coefficient.

Yet another approach has been to study the harmonic side of music, i.e. notes being played
simultaneously [9]. In it, a node would consist of nodes that are played at the same time as
represented in the musical score. Edges would then be created as in most other studies, linking
nodes with a set of simultaneous playing notes whenever these sets of nodes occur one after the
other.

Chapter 3

Songs to Networks

In this chapter we present what we used to study music, explaining what the MIDI format is
and how it can be useful, particularly for our study. As well as discuss how we mapped songs
into networks, going through each phase and showing each song in various visual formats.

3.1 Data

There are two types of music representation: symbolic and audio.

In symbolic representation (its most common format being MIDI) the song is recorded via
music notation, which allows us to look directly at the musical aspects of the song as it was
composed.

Whereas in audio only the audio waves are recorded (in formats such as MP3 or FLAC), and
so we can only analyse the final product which lacks the description used when creating a song.

So while audio might be better to replay and listen to, the symbolic representation allows for
a different analysis of the song, with a strong focus on its elemental musical concepts, such as
notes’ pitch and duration. So with it, we can attempt to better grasp how those elements affects
the music in its whole structure.

In this study we will be analysing songs resorting to symbolic representation through MIDI
files, as there is easy access, and as mentioned before it will provide us a means to look at a song
through its music elements. Our datasets are all subsets of The Largest MIDI Collection on the
Internet 1 and Musescore.com 2 (the latter specifically for classical music).

1https://www.reddit.com/r/WeAreTheMusicMakers/comments/3ajwe4/the_largest_midi_
collection_on_the_internet/, 2022

2https://musescore.com/, 2022

13

https://www.reddit.com/r/WeAreTheMusicMakers/comments/3ajwe4/the_largest_midi_collection_on_the_internet/
https://www.reddit.com/r/WeAreTheMusicMakers/comments/3ajwe4/the_largest_midi_collection_on_the_internet/
https://musescore.com/

14 Chapter 3. Songs to Networks

3.1.1 MIDI

The MIDI format is ideal for our purposes, since through it, we can analyse the song note by
note. Each MIDI file can have one or more tracks. When a song is split into several tracks, each
track corresponds to only one instrument. But one instrument can be represented in more than
one track. For example when playing piano, often each hand plays a different part of the song,
which is distinctively separated into two staffs on a musical score, as shown in the example of
figure 3.1. MIDI files save each part represented by a staff as an individual track.

Figure 3.1: An excerpt of Lacrimosa from the Requiem in D minor (Mozart)

However, there is not an obligatory standard way of recording the midis, at least among the
dataset we worked with. Where sometimes, the same instrument can have multiple tracks.

A track in a MIDI file is essentially an ordered list of messages, a message being either a
Message or a MetaMessage, where each message makes a change to the track on a given time.
The messages that we will focus on are the Messages of type note_on and note_off, which
serve mainly to determine when an instance of a note starts or ends. Each of those messages
specify a note, octave, and time. Note will hereby be used to refer to the pair: note and octave.
As each pair is represented in MIDI by a note number from 1 to 127, that is what we used to
identify the note.

Higher note numbers will represent higher octaves. The note numbers 0 to 11 correspond
to the notes in the first octave, 12 to 23 to the notes in the second, and so forth. We show in
table 3.1 the full list of notes matching their usual musical notation with the note numbers used
in MIDI. One note number per pair (note and octave).

In the example message showed in figure 3.2, the message being of the type note_on is then
starting a note. Each message of either type has as attributes: channel, note, velocity,
and time.

� �
Message(’note_on’, channel=0, note=60, velocity=80, time=20)� �

Figure 3.2: MIDI message

Each channel represents the information of a specific instrument, and unlike the tracks

https://midi.org/

3.1. Data 15

Octave Note Number
C C# D D# E F F# G G# A A# B

-1 0 1 2 3 4 5 6 7 8 9 10 11
0 12 13 14 15 16 17 18 19 20 21 22 23
1 24 25 26 27 28 29 30 31 32 33 34 35
2 36 37 38 39 40 41 42 43 44 45 46 47
3 48 49 50 51 52 53 54 55 56 57 58 59
4 60 61 62 63 64 65 66 67 68 69 70 71
5 72 73 74 75 76 77 78 79 80 81 82 83
6 84 85 86 87 88 89 90 91 92 93 94 95
7 96 97 98 99 100 101 102 103 104 105 106 107
8 108 109 110 111 112 113 114 115 116 117 118 119
9 120 121 122 123 124 125 126 127

Table 3.1: Representation of notes in their usual notation mapped to MIDI’s note numbers

each instrument is only represented by a single channel.

The value for note is the note number that represents the notes in MIDI.

velocity essentially measures how “hard” a note is played. For instance how hard a piano
key is played.

The time attribute, which exists in all messages, indicates how much time after the previous
message the current one will occur.

Message can also be used to define the instrument to play the notes, called program

in MIDI. Besides Message there is also another type called MetaMessage. This serves for
example to: end a track, marking the time it ends; set the value for tempo for the rest of the
track’s duration; define a name for the track.

The time attribute of each message is delta time in ticks. So the number of ticks the current
message will occur after the previous message. Where the duration in microseconds of each tick
depends on the tempo, and the number of ticks per beat, defined for the song.

The value for tempo specifies the duration of each beat. Unlike the standard music concept,
in MIDI files tempo is given as microseconds per beat, instead of beats per minute. We will refer
to MIDI’s parameter for tempo as tempo.

Each beat contains a specific number of ticks. That number is given by the parameter
ticks_per_beat.

The parameter ticks_per_beat is fixed for the whole song, defined as a general attribute
of the MIDI file and not via a Message, while the tempo can be changed at any time throughout
the song via a MetaMessage.

An example of the mentioned units is given in the figure 3.3 (taken from Mido’s page).

16 Chapter 3. Songs to Networks

Minutes

Beats

Ticks

4 beats per minute (BPM)

3 ticks per beat

Figure 3.3: Representation of MIDI time units

3.1.2 Processing

For every song we analyse only one track. In our analysis, we manually picked a track for each
song. Ideally the track would be chosen automatically, but we have not found a suitable method
to make such choice.

A note can then be analysed by looking at the two messages that indicate the note’s starting
and ending time. Which is done by looking at the consecutive messages with the same note
number.

After having chosen a track, we obtain a list of ordered notes, by going through the
aforementioned messages note_on and note_off, creating pairs of messages that link a
note’s starting and ending time. The notes each being represented by their MIDI note number.
Since notes can overlap (one starting before a previous one having finished) what are consecutive
notes is not straight forward. For our mapping we chose to order the notes by their starting time.

In figure 3.4 we present only the note_on and note_off messages of a MIDI track. The
pairing of the messages is represented by colour and number. If two messages are paired, then
one starts the note and the other ends it.

In the example there are four messages which have the note code 45. Two of them start a note
with that note number, and another two end it. As mentioned before we pair them simply by
the order in which they appear. Since the notes are ordered by their starting time, the resulting
order would then be as follows: 45 → 60 → 45.

� �
1 - Message(’note_on’, channel=0, note=45, velocity=80, time=20)
2 - Message(’note_on’, channel=0, note=60, velocity=80, time=20)
1 - Message(’note_off’, channel=0, note=45, velocity=80, time=20)
3 - Message(’note_on’, channel=0, note=45, velocity=80, time=20)
2 - Message(’note_off’, channel=0, note=60, velocity=80, time=20)
3 - Message(’note_off’, channel=0, note=45, velocity=80, time=20)� �

Figure 3.4: MIDI message pairing

3.2. Mapping 17

3.2 Mapping

Given the ordered notes list, we create from it a directed graph to map the track.

Each unique note appearing in the list would correspond to a node. With a single node per
note (note code), i.e. multiple notes of the same note code would not give origin to different
nodes. For each ordered pair of notes we then create a directed edge between the corresponding
nodes. The edge having as weight the number of times that the pair occurs in the song, as to
differentiate how meaningful an edge (pair of notes) is to a song.

Rests Another thing we considered as nodes were rests. MIDI files do not need to explicitly
define a rest, as it occurs naturally whenever there are no notes playing for a certain time. As
the way we were creating the graph did not include those rests we decided to add them. Adding
them enriched the graph as a means to study a song, since silence is as much of a choice as any
particular note, as it is in fact choosing not to play any note. We considered a rest whenever
there was an interval of time between notes that was larger than a threshold. The threshold
corresponding to the minimum duration of all notes of the song (at least 1 tick). If the interval of
time is below the maximum duration of all notes then they are considered a short rest associating
it with the note number 128, if not we consider them as a long rest with the note number 129.

We considered at most one rest (short or long) between two consecutive notes. So there will
never be an edge between the nodes corresponding to the rests.

After some experimenting we quickly realized that with these default values the mapped
graphs of the songs would be centred on those rest nodes. Having many more rests than each
unique note present. To correct this aspect we added three parameters, for fine-tuning, to obtain
representations that still accounted for rests, but in a way that it did not overshadow information
from the actual notes. Instead of simply using the minimum duration as the lower threshold, we
used it multiplied by a parameter (SHORT_REST_THRESHOLD_MULTIPLIER).
Similarly, we added a multiplier (LONG_REST_THRESHOLD_MULTIPLIER) to the maximum
duration, to define the border between short and long rest.

Since many rests would happen in between too long periods, which would be explained by
music being played in other tracks at the time, we also added a maximum value for rests. This
parameter would also be a multiplier (REST_MAX_MULTIPLIER) of the longest note duration.

For the datasets and analysis mentioned later on in this study, we used the values:

• SHORT_REST_THRESHOLD_MULTIPLIER = 200
• LONG_REST_THRESHOLD_MULTIPLIER = 1
• REST_MAX_MULTIPLIER = 5

18 Chapter 3. Songs to Networks

3.2.1 Mapping stages

We illustrate our mapping by going through the different stages. We process a MIDI file via the
Python package Mido, and we obtain the list of messages as shown in figure 3.5. As previously
mentioned we will only focus on the messages that start or end a note, which are the ones of
type note_on and note_off. In this example we will only need to pay attention to track 1,
as track 0 does not even start or end any note and only sets some parameters (e.g. tempo) for
the MIDI file.

� �
0: MidiTrack([

MetaMessage(’time_signature’, numerator=4, denominator=4,
clocks_per_click=24, notated_32nd_notes_per_beat=8, time=0),

MetaMessage(’set_tempo’, tempo=500000, time=0),
MetaMessage(’end_of_track’, time=0)])

1: MidiTrack([
MetaMessage(’track_name’, name=’Ragtime Piano’, time=0),
Message(’program_change’, channel=0, program=3, time=0),
Message(’note_on’, channel=0, note=60, velocity=80, time=20),
Message(’note_off’, channel=0, note=60, velocity=80, time=30),
Message(’note_on’, channel=0, note=62, velocity=80, time=20),
Message(’note_off’, channel=0, note=62, velocity=80, time=60),
Message(’note_on’, channel=0, note=60, velocity=80, time=20),
Message(’note_off’, channel=0, note=60, velocity=80, time=30),
Message(’note_on’, channel=0, note=64, velocity=80, time=20),
Message(’note_off’, channel=0, note=64, velocity=80, time=30),
Message(’note_on’, channel=0, note=64, velocity=80, time=20),
Message(’note_off’, channel=0, note=64, velocity=80, time=30),
Message(’note_on’, channel=0, note=60, velocity=80, time=20),
Message(’note_off’, channel=0, note=60, velocity=80, time=30),
MetaMessage(’end_of_track’, time=0)])� �

Figure 3.5: MIDI message list

From the track 1 we present it as a musical score in figure 3.6. While MIDI records information
as a note’s velocity, which in a piano, for example, represents how hard or soft a key is played,
the score does not. Furthermore, MIDI can hold precise values for duration of a note, and time
in between different notes’ starts and ends, that can be much shorter than the ones on a score.
Thus, the score holds less information than a MIDI file. Which is to be expected as a score is to
be read by a human whereas a MIDI file by a MIDI player.

The notes in the example MIDI file are mapped from their note numbers to the usual score
representation as:

• 60 → C4
• 62 → D4
• 64 → E4

Having processed the messages from a chosen track, we will then map those notes to a directed

3.2. Mapping 19

Figure 3.6: Musical score representation of the MIDI message list: each note being now represented
as a single element as opposed to a pair of messages

graph. What we look to map the notes is the order in which they appear. But as mentioned, the
way our mapping works, to create the edges we pay attention solely to the notes’ starting time.
To visualize the times of each note, we present the notes of track 1 in a timeline in figure 3.7.
We note that all the notes have the same duration except for the note with code 62 (represented
as D4 in the score), which lasts twice as long as the others. That information, the duration of
each note, is kept in the timeline figure.

Figure 3.7: MIDI timeline representation of each note across time, representing their starting
and ending times, as well as their duration

Having the notes ordered by their starting time, we then create each occurring note as a
node, and create a directed edge between two consecutive notes. The edge having as weight the
number of times that ordered pair occurs. The resulting directed graph is presented in figure 3.8.
Our mapping does not preserve the duration aspect of each note, and so the presented graph
ignores this information.

20 Chapter 3. Songs to Networks

60

6264
1

11
1

1

Figure 3.8: Representation of the mapped graph obtained from the notes of the MIDI message
list

3.2.2 Overlap

The examples shown so far had at all instances at most one note playing. But even within a
single track, we can have the case where there are several notes playing at the same time.

With our mapping an edge is created whenever a note follows another. That order being
given by the starting times of those notes.

A sequence of notes as shown in figure 3.9(a) has the note 50 start before the note 51, so in
the mapped graph the node corresponding to note 50 has an edge to the node representing note
51. The mapped graph is presented in figure 3.9(b). In this case the notes are clearly separated.
The second note starting after the first ends.

(a) Timeline

50 51
1

(b) Mapped graph

Figure 3.9: Overlap example 1

Since the starting time alone defines the order of the notes, and thus the direction of the
edges, even if notes overlap the mapping can remain the same. In figure 3.10 the note 51 overlaps
with note 50, i.e. there is a period where they are both playing. But because the order of the
starting time is the same, the mapped graph is the same as in example 1.

3.2. Mapping 21

In example 3, shown in figure 3.11, the note 51 starts and ends while the note 50 is playing.
But like in example 2, despite the notes overlapping, the resulting graph is the same as the one
of example 1.

Figure 3.10: Overlap example 2 Figure 3.11: Overlap example 3

With our mapping only one connection will be counted for each note instance. Unless if it is
the final note to be played, in which case it will not create an edge or increase an existing one’s
weight.

In figure 3.12, even though the note 50 is played throughout the entire time, it is only mapped
as the first note. Having only a connection to note 51, which was the first note to start after it.
Despite the fact that while note 50 played, the note 51 had been played twice and note 52 once.

(a) Timeline

50 51 52
1 1

1

(b) Mapped graph

Figure 3.12: Overlap example 4

Chapter 4

Analysis

Our goal was to understand what music characteristics we could identify when resorting to
features obtained from the network that mapped the song. We did this by analysing sets of
songs, through a chosen feature set.

4.1 Features

Since most metrics evaluate at a node level [4], we obtained the arithmetic average of the metric
values for all nodes present in the network to create a feature that could be used to represent the
whole network. There is an expected loss of information in doing so, but it allows us to compare
networks more easily.

We have already mentioned average degree (as well as average in-degree, and average out-
degree), we calculate the average of other metrics in the same manner.

betw = 1
|V |

∑
u∈V

betw(u) (4.1)

closw = 1
|V |

∑
u∈V

closw(u) (4.2)

clustw = 1
|V |

∑
u∈V

clustw(u) (4.3)

When comparing the features of each graph, among the entire set of graphs, because different
musics can have different lengths, the absolute values could vary enough that even if two songs
are alike (with respect to the features we use) it would not be noticed by our study. Thus, we
chose to normalize the metrics’ values to the interval [0, 1]. The metrics that are not normalized
by default, are normalized by comparing to the max and min values of that feature across all
songs of the set.

23

24 Chapter 4. Analysis

We will denote the normalized version of a metric(u) as metricn(u).

We normalized the average weighted in-degree, the average weighted betweenness centrality,
and the average shortest path length as follows. For each dataset we took the minimum (min)
and maximum (max) values of each metric, and linearly mapped the values from the interval
[min, max] to the interval [0, 1], resorting to the simple mapping:

f : [min, max] → [0, 1]

x 7→ x − min

max − min

As for density, modularity, closeness centrality, and clustering coefficient, by definition these
metrics already output values in the interval [0, 1].

NetworkX was used to calculate the node’s degree, betweenness centrality, closeness centrality,
clustering coefficient and average shortest path length. As well as the graph wide metrics:
modularity and density.

The features we selected for our analysis were then:

• Average Weighted In-degree
• Average Weighted Betweenness Centrality
• Average Weighted Closeness Centrality
• Average Clustering Coefficient
• Average Shortest (Weighted) Path Length
• Density
• Modularity

Other features could have been chosen. We decided to stick to “core” complex networks
features, hoping to capture similarly “basic” musical aspects. Sets of features including most of
the ones we chose have been used in other complex network centred music studies [7, 16].

Our intent when choosing the features was for them not to be redundant. To have each
capture some different aspect of the song, even if it does not translate by itself as a characteristic
that we can measure. As it can be that we will have to use two or more to be able to do so for
some musical aspects.

4.2 Synthetic Dataset

To understand the characteristics that could be studied with this feature set we designed, and
created, a few synthetic MIDI files. The goal was to first compare the feature values of examples
that were easier to understand than actual songs.

4.2. Synthetic Dataset 25

4.2.1 Designing The Dataset

Most of the examples of this dataset were created to present simple patterns to evaluate how
our feature set worked in capturing musics’ characteristics. Despite none of the examples being
music as perceived by us, they still represent sound patterns that could exist in songs, even if in
a less “perfect” state. The ones that do not contain a simple pattern are created fully randomly
(or with a simple restriction).

We present a visualization of each, a time series representation, in figure 4.1. Showing each
note by their starting time in ticks, and just like in our mapping we ignore their duration. The
notes scale goes from 0 to 129 (the standard MIDI note numbers of 0 to 127, and the short and
long rests we have added as, respectively, 128 and 129).

In this Synthetic Dataset, we present 8 examples:

• peak_fixed_octave - We fixed the first octave and made a sequence of equal peaks,
where a peak is a sequence of notes where each note is a note code above the previous one
until it reaches the highest chosen note, then it will descend linearly in the same manner,
each note being exactly a note code below the previous one.

• peaks_small_large_constant - Similar to peak_fixed_octave but with smaller
peaks in between each of the larger ones.

• peaks_small_large_rising - A version of peaks_small_large_constant that
is not constant, in the sense that it as an upwards tendency. A repetition of a small peak
followed by a larger one, but in this case the larger one does not descend as much as it had
risen. Which results in the aforementioned upward tendency.

• random_fixed_octave - Each note is obtained by generating a random note code in
the interval [0,11] which represents the first octave.

• random_fully - A fully random example where each note is obtained as a randomly
generated number from one of 128 possible note codes (we excluded the rests as they can
not be represented as notes in the MIDI format).

• repeat_aabb_up - We repeated each note of the first octave five times, starting with the
smaller note code 0 and going up one by one.

• straight_fixed_octave_up - In this example we start with the note code 0 and go
one by one until we reach the final note of the first octave. We then repeat this sequence 6
times.

• straight_rising_octave_up - Each note is obtained as one higher of the previous
one, starting with the note code 0.

The number of notes on each example is not always the same, as can be seen by the number
of ticks on each example’s time series representation.

We also present the graph, resulting from our mapping, of each of those synthetic examples
in figure 4.2. For each graph the node size is relative to its in-degree, the smallest size matching
the lowest in-degree value of the graph, and the largest size the highest. Likewise, the node

26 Chapter 4. Analysis

colour is relative to its betweenness centrality value, and the edge colour is relative to its weight
(darker colours meaning higher value).

4.2. Synthetic Dataset 27

(a) peak_fixed_octave (b) peaks_small_large_constant

(c) peaks_small_large_rising (d) random_fixed_octave

(e) random_fully (f) repeat_aabb_up

(g) straight_fixed_octave_up (h) straight_rising_octave_up

Figure 4.1: Synthetic dataset time series representations

28 Chapter 4. Analysis

(a) peak_fixed_octave (b) peaks_small_large_constant

(c) peaks_small_large_rising (d) random_fixed_octave

(e) random_fully (f) repeat_aabb_up

(g) straight_fixed_octave_up (h) straight_rising_octave_up

Figure 4.2: Synthetic dataset graphs with node size relative to in-degree, node colour relative to
betweenness centrality, and edge colour relative to weight (darker colours meaning higher value)

4.2. Synthetic Dataset 29

4.2.2 Experimental Results

We present the values of the mentioned feature set of each of the synthetic examples in table 4.1.
Besides the mentioned features we have also added two columns, under grey coloured headers,
containing values that are pertinent to understanding the feature set values: number of nodes
(#Nodes) which correspond to the number of unique notes and can be seen in the vertical axis of
the time series representation; and number of notes (#Notes) which is the total number of notes
occurring in each song’s track, each note is represented as a dot on the time series representation
of each song.

Table 4.1: Synthetic dataset features

Average Weighted In-degree Being weighted the average in-degree is essentially the
proportion of notes (related with the total sum of edge weights) and occurring unique notes.
Which is why peaks_small_large_constant has the highest value, since the occurring
notes are all restricted to the first octave, and it is the example with the highest number of notes.
straight_rising_octave_up being on the opposite side of the spectrum with the highest
number of unique notes of the whole dataset, but each note occurring only once.

We can see that it is not just about the number of notes, since peak_fixed_octave clearly
has fewer notes (as seen also by the number of ticks) than peaks_small_large_rising

but has a much higher average weighted in-degree. This happens because the notes from
peak_fixed_octave are all on the first octave, whereas peaks_small_large_rising

does not have that restriction and so has a much higher number of unique notes. A song being
more condensed on a lower number of unique notes, will have a higher average weighted in-degree.

Average Weighted Betweenness Centrality straight_rising_octave_up is a single
one direction chain. Which makes it so in this example there is at most one directed path between
two notes. Because it is a chain, all nodes “before” a specific node will need to traverse it to
reach all the nodes “after” it. The number of paths that traverse through a node will then be
the product of the number of nodes “before” it, with the number of nodes “after” it. Therefore,
the closer to the middle of the chain a node is, the higher its (weighted) betweenness centrality.
As can be seen very starkly by looking at its graph.

30 Chapter 4. Analysis

The random_fixed_octave example has a low number of unique notes (being only notes
on the first octave) and since all notes were randomly generated is the example the furthest away
from a chain. Each node having often many more than just one edge pointing to it.

The other random example random_fully has a much higher average weighted betweenness
centrality. Since even though each note is generated randomly, the notes are no longer restricted
to the first octave. Given the way our mapping works we always establish a connection between
two consecutive notes, which makes it likely to result in something resembling a long chain, even
if some nodes do end up having more than one edge pointing to them.

Average Weighted Closeness Centrality For the same reasons as mentioned above,
random_fixed_octave has the highest average weighted closeness centrality. It has very few
nodes, and many distinct edge connections.

Similarly, straight_rising_octave_up has a very low value because there are many
nodes and at most one way to reach each node, often passing through several nodes.

This does not mean however that the metric is redundant. We can see for example that
although straight_fixed_octave_up and straight_rising_octave_up have nearly
the same average weighted closeness centrality the latter has a much higher average weighted
betweenness centrality, since it is a one way chain with many more nodes than the first.

Average Clustering Coefficient Since most of these examples are chains or near chains,
their nodes have very little clustering coefficient. Except for the random_fixed_octave that
has very few nodes but a high diversification. Having a very high density value, which ends up
resulting in many triangles (sets of three nodes where each pair of nodes has a connection).

Average Shortest (Weighted) Path Length Both peak_fixed_octave and
peaks_small_large_constant have high values because all existing edges have high weight,
since both examples were created by repeating a certain patten a number of times. Even though
peaks_small_large_rising’s edges do not have such high weights, because it is also a
chain, it has more nodes there are more shortest paths that need to go through more nodes than
in the two other examples.

random_fixed_octave has the lowest values since there are more edges in proportion to
the number of nodes, and each edge has weight 1 or 2. These two facts combined lead to a much
lower length of the shortest paths.

Density Density ends up describing the variety of the connections, within a specific number
of unique notes. random_fixed_octave has a very high density which has an impact on the
previously mentioned average weighted betweenness centrality and average weighted closeness
centrality, having a very high value in both. While straight_rising_octave_up as well

4.2. Synthetic Dataset 31

as random_fully having many unique notes, but a very low number of edges considering all
possible edges between all the existing nodes, have a very low density value.

Modularity straight_rising_octave_up and peaks_small_large_rising have the
highest modularity values because they are both chains. In the case of the first, there is only
one outward connection from each node (except the last), with each edge having as weight 1.
Each community is just a sequence of consecutive nodes, and they all have more or less the same
number of nodes. The latter is a chain with edges in both directions. With the edges on the first
few nodes (corresponding to the small peak) have much higher weights than the rest. Which
results in having communities on those nodes, and then separate ones on the rest of the nodes.

With the lowest modularity value there is random_fixed_octave, which comes from how
more diverse and less of a pattern it follows compared to the rest. From its random nature and
the number of different connections it has on very few nodes. In contrast with random_fully

that although also randomly generated ends up as a near chain. We present the four mentioned
examples’ graphs with the nodes coloured by community in figure 4.3.

32 Chapter 4. Analysis

(a) straight_rising_octave_up (b) peaks_small_large_rising

(c) random_fixed_octave (d) random_fully

Figure 4.3: Graph representations of the synthetic dataset examples with nodes coloured by
community

4.3 Music Dataset

Having used our feature set on a synthetic one, we moved on to analysing our original target,
which was “real” music.

To test our feature set capabilities we chose a set of songs of three different genres: classic,
pop and rock. The goal being to ascertain if it is possible through it to distinguish between songs
of the different genres, and if so how. Ideally pinpointing subsets of features that allow us to
distinguish between two distinct sets of songs.

4.3. Music Dataset 33

As mentioned before, we analysed each song by going through one of its tracks. For this
study we picked the track that seemed to better capture the song’s voice or melody. That by
itself, i.e. choosing the track for each song, is deserving of a more meticulous study. Particularly
since not all MIDIs are created the same. Some use one track per instrument, others split the
instrument’s part into several tracks.

Nevertheless, we believe that even when taking that into account, the results already seem
to provide some insights on what it is possible to capture when resorting to complex networks’
features.

4.3.1 Experimental Analysis

As to better present the differences between the genres, we have studied them in pairs of two.

To see how well it fares with real music, after having only tested on a synthetic set which was
created to have distinct “songs”, we chose to start with a set of classical and pop songs. Since
we expected the genres to be the most distinct, and so with the differences more likely to be
noticeable in our analysis.

Similarly to what we did with the synthetic dataset, we present the time series representations
of each song’s chosen track in figure 4.4. Presenting the pop songs representation on the left
column, and classical songs on the right one. At a first glance strikes us the different range of
notes used on both sets of songs. Pop music being restricted to a noticeably smaller number of
notes. We can also see that along the duration of the track there seems to be a greater variation
on the classical songs.

In figure 4.5 we present the graphs of the pop and classical songs. The number of nodes,
which represents the number of distinct notes occurring in a track, are much greater on classical
songs as previously seen on the time series representation.

34 Chapter 4. Analysis

(a) all_that_she_wants_ace_of_base (b) ballade_in_a_flat_major_op_47_chopin

(c) dont_pull_your_love_grass_roots (d) grande_fantaisie_cubaine_nicolas_espadero

(e) love_the_way_you_lie_eminem (f) piano_concerto_1st_movement_cadenza_grieg

(g) take_on_me_aha (h) sonatine_bureaucratique_erik_satie

Figure 4.4: Time series representations of the pop and classical songs, respectively, on the left
and right columns

4.3. Music Dataset 35

(a) all_that_she_wants_ace_of_base (b) ballade_in_a_flat_major_op_47_chopin

(c) dont_pull_your_love_grass_roots (d) grande_fantaisie_cubaine_nicolas_espadero

(e) love_the_way_you_lie_eminem (f) piano_concerto_1st_movement_cadenza_grieg

(g) take_on_me_aha (h) sonatine_bureaucratique_erik_satie

Figure 4.5: Graph representations of the pop and classical songs, respectively, on the left and
right columns

36 Chapter 4. Analysis

Table 4.2: Pop and classical songs comparison

Looking now at the feature set we can indeed see some differences. As mentioned before there
is a clear difference in the number of unique notes, seen here as number of nodes (#Nodes), used
between the two sets of songs with classical songs having a much higher number of unique notes.
The pop songs seem to have a higher average weighted in-degree value, despite the classical songs
having a higher number of notes (#Notes).

The classical songs have greater average weighted betweenness centrality as well as average
weighted closeness centrality. While pop songs seem to have higher average weighted in-degree
and average shortest weighted path length.

Average clustering coefficient and density display less contrast, but for the most part pop
songs seem to have higher values as well.

Modularity values seem to be less similar within the songs of each genre, not being, in this
particular case, a reliable feature to distinguish pop and classic. With classical songs having
modularity values restricted to a much smaller interval than that of pop songs that seem to be
much less represented by this feature.

Rock songs To further test our feature set we chose a third genre (rock) which should also be
somewhat visibly distinct of the other two. We present the graph and time series representation
of each song side-by-side on figure 4.6.

When looking at the time series representation, rock songs seem to display a range of notes
in between of that of classical and pop songs. More distinct notes than pop and less than that of
the classic genre.

That is also visible in the graphs. But we can also see that rock graphs seem much more
spread out than that of pop songs. Which are more closed, and appear to repeat more patterns.

4.3. Music Dataset 37

(a) anyway_genesis time series representa-
tion

(b) anyway_genesis graph

(c) dirty_deeds_done_dirt_cheap_acdc
time series representation

(d) dirty_deeds_done_dirt_cheap_acdc
graph

(e) go_down_acdc time series representation (f) go_down_acdc graph

(g) hard_as_a_rock_acdc time series repres-
entation

(h) hard_as_a_rock_acdc graph

Figure 4.6: Rock songs: showing time and graph representations side-by-side

38 Chapter 4. Analysis

In table 4.3 we present the feature values of the chosen songs of the classic and rock genres.

Comparing classical and rock songs we can spot some differences that could also be seen
when comparing classical and pop songs. When compared to rock and pop songs, classical songs
have lower average weighted in-degree and average shortest weighted path length values, as well
as higher average weighted betweenness centrality and average weighted closeness centrality
values. The difference in average shortest weighted path length, being however much greater
when comparing classical and rock songs.

Not all features present this similarity however, with average clustering coefficient differences
being, much more similar in most rock and classical songs, with a stark exception to
dirty_deeds_done_dirt_cheap_acdc which bears a considerably lower value.

The selected rock songs seem to have a tendency for higher modularity values overall. With
piano_concerto_1st_movement_cadenza_grieg distinguishing itself from the rest of the
songs of the same genre with a much higher modularity value.

With even less contrast than when we compared pop and classical songs, in this case density
does not provide any remarkable differences between the two sets. Being much more similar and
without any resemblance to a clear tendency of either genre having consistently higher values
than the other.

Table 4.3: Rock and classical songs comparison

To conclude our genre-by-genre comparison we analysed the feature values of the genres pop
and rock. We then present the table with the comparison in table 4.4. Though not as clearly as
the previous two pairs, there are still some noticeable differences between the chosen rock and
pop songs.

Pop songs have overall higher average weighted closeness centrality, average clustering
coefficient, and density. While rock songs bear higher average weighted betweenness centrality,
and average shortest weighted path length. Rock songs also present less disparity in their
modularity values when compared to pop songs. With the pop set containing songs with both
the highest and lowest modularity value of this set.

The average weighted in-degree value does not seem to be particularly higher in either genre.

4.3. Music Dataset 39

Table 4.4: Rock and pop songs comparison

4.3.2 Clustering Results

A practical, and immediate, application of the proposed feature set, would be to distinguish
songs in a more automatic manner. As a simple test we applied a common clustering algorithm
to the mentioned music dataset (including all three genres), to evaluate whether it would be a
path worth pursuing.

We resorted to the widely used k-means algorithm, which partitions n data entries into k
clusters [13]. It does so by iteratively finding clusters that best describe the dataset through a
similarity measure. The number of clusters was chosen via calculating the best value of silhouette
coefficient, which describes how well divided the data is. I.e., seeing similarity as distance, the
silhouette coefficient would measure how close are the entries within each cluster and how far
apart are entries of different clusters. We tested for k values ranging from 2 to 6. For our feature
values to be reasonably used as similarity measure we normalized each feature (that does not
already output values in [0, 1]) as mentioned at the beginning of the chapter.

In table 4.5 we present the clustering results of our music dataset. The classical songs were
all grouped up in a single cluster isolated from all others. While the pop and rock songs had
each one song outside the cluster that contained most of each genre’s songs. The cluster 2, which
contains three of the four pop songs, contains also one of the rock songs. With a single pop song
take_on_me_aha remained isolated in cluster 3.

This seems to indicate that the difference between these chosen pop and rock songs is not as
great as that of pop and classic, and rock and classic. Which matches our earlier pair-by-pair
analysis.

40 Chapter 4. Analysis

Table 4.5: Music dataset clustering results

Chapter 5

Conclusions

From our tests, we have been able to conclude that in fact features from the song’s network
topology can be used to capture certain musical aspects, from both synthesized examples and
actual songs. As we have used the features to present distinctions between the synthetic examples,
as well as between selected songs from different music genres.

Of course, we need to consider that for the music dataset we handpicked tracks for each song,
so as to include the tracks that seemed to contain the song’s melody (or voice). But that choice
influenced, for better or for worse, the results we obtained. Furthermore, this dataset is but
a collection of mere 4 song examples of 3 genres, so it is not proof of the effectiveness of our
feature set. That said, this does seem to glimpse at its potential.

Our objective is of course to distinguish between real songs in a more autonomous way. Thus
finding a better method for choosing the track representing a song would be the first of the
follow-up paths that we could pursue to improve our work.

One aspect that we could consider adding to our mapping to improve our work, would be
chords. A set of notes being played simultaneously could be seen as a node. Allowing for nodes to
contain not just a single note but an entire set of “simultaneously” playing notes. By establishing
a threshold we would establish a certain duration where notes that were played within such
duration would be considered part of chord. This addition of a new type of node, could provide
information that would help us better capture musical aspects, as instruments such as piano or
guitar, rely quite heavily on them.

Many more approaches could be followed. We presented a single mapping, and in this we
made assumptions that affect our results. Other attributes present in the rich MIDI files can be
used to enhance our mapping, or to create other ones. Attributes such as the notes’ duration,
and velocity.

The quality of the MIDI files used is also relevant. We could benefit from gathering MIDI
files that were recorded using similar standards (or perhaps even create our own), so that their
quality would not interfere with the representation of each song. Representing all songs in a more

41

42 Chapter 5. Conclusions

or less consistent way, would ensure that the differences would lay more strongly on the songs
themselves and not on added noise or lower quality originated by the creation of the MIDI itself.

MIDIs created by directly capturing notes from instruments will also have their own nuances
associated with each person. We could also then, for example, test how similar a person is able
to play the same song over and over.

In our study we only used a single track of each song. But we could alternatively resort to
creating a multilayer network [14] from the song, where each layer would be mapped to a track.
Where notes happening at similar times on different tracks would be connected by interlayer
edges. We could analyse specifically piano tracks, which as mentioned, are often composed of
two tracks one that mostly represents melody and the other the rhythm. This would give us a
way to compare not just the rhythm and melody parts by themselves, but also the music as a
whole while still considering them as different types of tracks.

Bibliography

[1] Réka Albert and Albert-László Barabási. Statistical mechanics of complex networks. Reviews
of modern physics, 74(1):47, 2002.

[2] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast
unfolding of communities in large networks. Journal of statistical mechanics: theory and
experiment, 2008(10):P10008, 2008.

[3] Tanmoy Chakraborty, Sriram Srinivasan, Niloy Ganguly, Sanjukta Bhowmick, and Animesh
Mukherjee. Constant communities in complex networks. Scientific reports, 3(1):1–9, 2013.

[4] L da F Costa, Francisco A Rodrigues, Gonzalo Travieso, and Paulino Ribeiro Villas Boas.
Characterization of complex networks: A survey of measurements. Advances in physics,
56(1):167–242, 2007.

[5] Luciano da Fontoura Costa, Osvaldo N Oliveira Jr, Gonzalo Travieso, Francisco Aparecido
Rodrigues, Paulino Ribeiro Villas Boas, Lucas Antiqueira, Matheus Palhares Viana, and
Luis Enrique Correa Rocha. Analyzing and modeling real-world phenomena with complex
networks: a survey of applications. Advances in Physics, 60(3):329–412, 2011.

[6] Eric de Silva and Michael PH Stumpf. Complex networks and simple models in biology.
Journal of the Royal Society Interface, 2(5):419–430, 2005.

[7] Stefano Ferretti. On the modeling of musical solos as complex networks. Information
Sciences, 375:271–295, January 2017.

[8] Pablo M Gleiser and Leon Danon. Community structure in jazz. Advances in complex
systems, 6(04):565–573, 2003.

[9] Florian Gomez, Tom Lorimer, and Ruedi Stoop. Complex Networks of Harmonic Structure
in Classical Music. In Valeri M. Mladenov and Plamen Ch. Ivanov, editors, Nonlinear
Dynamics of Electronic Systems, Communications in Computer and Information Science,
pages 262–269, Cham, 2014. Springer International Publishing.

[10] Derek Gossi and Mehmet H Gunes. Lyric-based music recommendation. In Complex
networks VII, pages 301–310. Springer, 2016.

43

44 Bibliography

[11] Roger Guimera and Luís A Nunes Amaral. Cartography of complex networks: modules and
universal roles. Journal of Statistical Mechanics: Theory and Experiment, 2005(02):P02001,
2005.

[12] Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure, dynamics,
and function using networkx. Technical report, Los Alamos National Lab.(LANL), Los
Alamos, NM (United States), 2008.

[13] Anil K. Jain. Data clustering: 50 years beyond k-means. Pattern Recognition Letters,
31(8):651–666, 2010. Award winning papers from the 19th International Conference on
Pattern Recognition (ICPR).

[14] Mikko Kivelä, Alex Arenas, Marc Barthelemy, James P. Gleeson, Yamir Moreno, and
Mason A. Porter. Multilayer networks. Journal of Complex Networks, 2(3):203–271,
September 2014.

[15] Xiao Fan Liu, Chi K. Tse, and Michael Small. Complex network structure of musical
compositions: Algorithmic generation of appealing music. Physica A: Statistical Mechanics
and its Applications, 389(1):126–132, January 2010.

[16] Xiaofan Liu, Chi K. Tse, and Michael Small. Composing Music with Complex Networks. In
Jie Zhou, editor, Complex Sciences, Lecture Notes of the Institute for Computer Sciences,
Social Informatics and Telecommunications Engineering, pages 2196–2205, Berlin, Heidelberg,
2009. Springer.

[17] Siobhan McAndrew and Martin Everett. Music as collective invention: A social network
analysis of composers. Cultural Sociology, 9(1):56–80, 2015.

[18] Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri Chklovskii, and Uri Alon.
Network motifs: simple building blocks of complex networks. Science, 298(5594):824–827,
2002.

[19] Federico Pablo-Martí, Ángel Alañón-Pardo, and Angel Sánchez. Complex networks to
understand the past: the case of roads in bourbon spain. Cliometrica, 15(3):477–534, 2021.

[20] Doheum Park, Arram Bae, Maximilian Schich, and Juyong Park. Topology and evolution of
the network of western classical music composers. EPJ Data Science, 4:1–15, 2015.

[21] Joan Serrà, Álvaro Corral, Marián Boguñá, Martín Haro, and Josep Ll Arcos. Measuring
the Evolution of Contemporary Western Popular Music. Scientific Reports, 2(1):521, July
2012.

[22] Lei Wang, Zheng Wang, Chen Yang, Li Zhang, and Qiang Ye. Linux kernels as complex
networks: A novel method to study evolution. In 2009 IEEE International Conference on
Software Maintenance, pages 41–50. IEEE, 2009.

[23] Xindi Wang and Ricky Laishram. Understanding Music from Symbolic Representation with
Higher Order Networks. page 9, 2020.

Bibliography 45

[24] Stanley Wasserman, Katherine Faust, et al. Social network analysis: Methods and
applications. 1994.

[25] Jian Xu, Thanuka L. Wickramarathne, and Nitesh V. Chawla. Representing higher-order
dependencies in networks. Science Advances, 2(5):e1600028. Publisher: American Association
for the Advancement of Science.

	Abstract
	Resumo
	Acknowledgments
	Contents
	List of Tables
	List of Figures
	Introduction
	Goals and Contributions
	Thesis Structure

	Preliminaries
	Complex Networks
	Graph Definition
	Common Metrics

	Musical Concepts
	Related Work

	Songs to Networks
	Data
	MIDI
	Processing

	Mapping
	Mapping stages
	Overlap

	Analysis
	Features
	Synthetic Dataset
	Designing The Dataset
	Experimental Results

	Music Dataset
	Experimental Analysis
	Clustering Results

	Conclusions
	Bibliography

